#Packages using LinearAlgebra using Plots using FFTW using Printf using BenchmarkTools using Rotations using StaticArrays #%Complex definition i=sqrt(Complex(-1)); #Definition of individual spin operators nspins=1 include("basis.jl") iu,ix,iy,iz,ip,im,ia,ib=basis(nspins) #General Setup timestep = 0.00001 w = StaticVector{3,Float64} w = [2500.0, 170.0, 30.0] eps = 0.000000001 th = w * timestep ham = 2 * pi * th[1] * ix[:,:,1] + 2 * pi * th[2] * iy[:,:,1] + 2 * pi * th[3] * iz[:,:,1] uham = exp(- i * ham) rho = iy[:,:,1] rho = uham * rho * uham' function derivative_x_expr(w::Vector{Float64},timestep::Float64) local ham = Array{Float64,2}(undef,3,3) local ctrl= Array{Float64,2}(undef,3,3) local res = Array{Float64,2}(undef,6,6) local mnull= zeros(Float64,3,3) local th = (2 * pi * timestep) .* w local ham = [0 -th[3] th[2]; th[3] 0 -th[1]; -th[2] th[1] 0 ] local ctrl= [0 0 0 ; 0 0 -1 ; 0 1 0 ] res = exp([ham ctrl; mnull ham]) return res end function derivative_y_expr(w::Vector{Float64},timestep::Float64) local ham = Array{Float64,2}(undef,3,3) local ctrl= Array{Float64,2}(undef,3,3) local res = Array{Float64,2}(undef,6,6) local mnull= zeros(Float64,3,3) local th = (2 * pi * timestep) .* w local ham = [0 -th[3] th[2]; th[3] 0 -th[1]; -th[2] th[1] 0 ] local ctrl= [0 0 1; 0 0 0; -1 0 0] res = exp([ham ctrl; mnull ham]) return res end function derivative_z_expr(w::Vector{Float64},timestep::Float64) local ham = Array{Float64,2}(undef,3,3) local ctrl= Array{Float64,2}(undef,3,3) local res = Array{Float64,2}(undef,6,6) local mnull= zeros(Float64,3,3) local th = (2 * pi * timestep) .* w local ham = [0 -th[3] th[2]; th[3] 0 -th[1]; -th[2] th[1] 0 ] local ctrl= [0 -1 0; 1 0 0; 0 0 0] res = exp([ham ctrl; mnull ham]) return res end function derivative_x_diffr(w::Vector{Float64},timestep::Float64,eps::Float64) local rot = Array{Float64,2}(undef,3,3) local rote= Array{Float64,2}(undef,3,3) local res = Array{Float64,2}(undef,3,3) local th = (2 * pi * timestep) .* w local rot = RotationVec(th[1],th[2],th[3]) th[1] = th[1] + eps local rote = RotationVec(th[1],th[2],th[3]) res = (rote - rot) ./ eps return res end function derivative_y_diffr(w::Vector{Float64},timestep::Float64,eps::Float64) local rot = Array{Float64,2}(undef,3,3) local rote= Array{Float64,2}(undef,3,3) local res = Array{Float64,2}(undef,3,3) local th = (2 * pi * timestep) .* w local rot = RotationVec(th[1],th[2],th[3]) th[2] = th[2] + eps local rote = RotationVec(th[1],th[2],th[3]) res = (rote - rot) ./ eps return res end function derivative_z_diffr(w::Vector{Float64},timestep::Float64,eps::Float64) local rot = Array{Float64,2}(undef,3,3) local rote= Array{Float64,2}(undef,3,3) local res = Array{Float64,2}(undef,3,3) local th = (2 * pi * timestep) .* w local rot = RotationVec(th[1],th[2],th[3]) th[3] = th[3] + eps local rote = RotationVec(th[1],th[2],th[3]) res = (rote - rot) ./ eps return res end function derivative_x_xact2(w::Vector{Float64},timestep::Float64) dRdx = StaticScalar{Float64} x = StaticScalar{Float64} y = StaticScalar{Float64} z = StaticScalar{Float64} r = StaticScalar{Float64} si = StaticScalar{Float64} co = StaticScalar{Float64} local x,y,z = w[1:3] .* (2 * pi * timestep ) local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r) local dRdx = zeros(3, 3) dRdx[1, 1] = (x^3 / r^3 - x / r) * si - (x / r^2 - x^3 / r^4) * 2 * (co - 1) dRdx[2, 2] = (x * y^2 / r^3 - x / r) * si + (x * y^2 / r^4) * 2 * (co - 1) dRdx[3, 3] = (x * z^2 / r^3 - x / r) * si + (x * z^2 / r^4) * 2 * (co - 1) dRdx[1, 2] = (x^2 * y + x * z) / r^3 * si + (2 * x^2 * y / r^4 - y / r^2) * (co - 1) - (x * z / r^2) * co dRdx[2, 1] = (x^2 * y - x * z) / r^3 * si + (2 * x^2 * y / r^4 - y / r^2) * (co - 1) + (x * z / r^2) * co dRdx[1, 3] = (x^2 * y - x * y) / r^3 * si + (2 * x^2 * z / r^4 - y / r^2) * (co - 1) + (x * y / r^2) * co dRdx[3, 1] = (x^2 * y + x * y) / r^3 * si + (2 * x^2 * z / r^4 - y / r^2) * (co - 1) - (x * y / r^2) * co dRdx[2, 3] = (x * y * z - z^2 - y^2) / r^3 * si + 2 * x * y * z / r^4 * (co - 1) - x^2 / r^2 * co dRdx[3, 2] = (x * y * z + z^2 + y^2) / r^3 * si + 2 * x * y * z / r^4 * (co - 1) + x^2 / r^2 * co return dRdx end function derivative_x_xact(w::Vector{Float64},timestep::Float64) dRdx = Array{Float64,2}(undef,3,3) x = Float64 y = Float64 z = Float64 r = Float64 si = Float64 co = Float64 local x,y,z = w[1:3] .* (2 * pi * timestep ) local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r) local dRdx = zeros(3, 3) dRdx[1, 1] = (x^3 / r^3 - x / r) * si - (x / r^2 - x^3 / r^4) * 2 * (co - 1) dRdx[2, 2] = (x * y^2 / r^3 - x / r) * si + (x * y^2 / r^4) * 2 * (co - 1) dRdx[3, 3] = (x * z^2 / r^3 - x / r) * si + (x * z^2 / r^4) * 2 * (co - 1) dRdx[1, 2] = (x^2 * y + x * z) / r^3 * si + (2 * x^2 * y / r^4 - y / r^2) * (co - 1) - (x * z / r^2) * co dRdx[2, 1] = (x^2 * y - x * z) / r^3 * si + (2 * x^2 * y / r^4 - y / r^2) * (co - 1) + (x * z / r^2) * co dRdx[1, 3] = (x^2 * z - x * y) / r^3 * si + (2 * x^2 * z / r^4 - z / r^2) * (co - 1) + (x * y / r^2) * co dRdx[3, 1] = (x^2 * z + x * y) / r^3 * si + (2 * x^2 * z / r^4 - z / r^2) * (co - 1) - (x * y / r^2) * co dRdx[2, 3] = (x * y * z - z^2 - y^2) / r^3 * si + 2 * x * y * z / r^4 * (co - 1) - x^2 / r^2 * co dRdx[3, 2] = (x * y * z + z^2 + y^2) / r^3 * si + 2 * x * y * z / r^4 * (co - 1) + x^2 / r^2 * co return dRdx end function derivative_y_xact(w::Vector{Float64},timestep::Float64) dRdx = Array{Float64,2}(undef,3,3) x = Float64 y = Float64 z = Float64 r = Float64 si = Float64 co = Float64 local x,y,z = w[1:3] .* (2 * pi * timestep ) local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r) local dRdy = zeros(3, 3) dRdy[1, 1] = (x^2 * y / r^3 - y / r) * si + (x^2 * y / r^4) * 2 * (co - 1) dRdy[2, 2] = (y^3 / r^3 - y / r) * si - (y / r^2 - y^3 / r^4) * 2 * (co - 1) dRdy[3, 3] = (y * z^2 / r^3 - y / r) * si + (y * z^2 / r^4) * 2 * (co - 1) dRdy[1, 2] = (y^2 * x + y * z) / r^3 * si + (2 * y^2 * x / r^4 - x / r^2) * (co - 1) - (y * z / r^2) * co dRdy[2, 1] = (y^2 * x - y * z) / r^3 * si + (2 * y^2 * x / r^4 - x / r^2) * (co - 1) + (y * z / r^2) * co dRdy[3, 2] = (y^2 * z - x * y) / r^3 * si + (2 * y^2 * z / r^4 - z / r^2) * (co - 1) + (x * y / r^2) * co dRdy[2, 3] = (y^2 * z + x * y) / r^3 * si + (2 * y^2 * z / r^4 - z / r^2) * (co - 1) - (x * y / r^2) * co dRdy[3, 1] = (x * y * z - x^2 - z^2) / r^3 * si + 2 * x * y * z / r^4 * (co - 1) - y^2 / r^2 * co dRdy[1, 3] = (x * y * z + x^2 + z^2) / r^3 * si + 2 * x * y * z / r^4 * (co - 1) + y^2 / r^2 * co return dRdy end function derivative_z_xact(w::Vector{Float64},timestep::Float64) dRdx = Array{Float64,2}(undef,3,3) x = Float64 y = Float64 z = Float64 r = Float64 si = Float64 co = Float64 local x,y,z = w[1:3] .* (2 * pi * timestep ) local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r) local dRdz = zeros(3, 3) dRdz[1, 1] = (x^2 * z / r^3 - (z / r)) * si + (x^2 * z / r^4) * 2 * (co - 1) dRdz[1, 2] = (x * y * z - x^2 - y^2) / r^3 * si + 2 * x * y * z / r^4 * (co - 1) - z^2 / r^2 * co dRdz[1, 3] = (z^2 * x - z * y) / r^3 * si + (2 * z^2 * x / r^4 - x / r^2) * (co - 1) + z * y / r^2 * co dRdz[2, 1] = (x * y * z + x^2 + y^2) / r^3 * si + 2 * x * y * z / r^4 * (co - 1) + z^2 / r^2 * co dRdz[2, 2] = (z * y^2 / r^3 - z / r) * si + (z * y^2 / r^4) * 2 * (co - 1) dRdz[2, 3] = (z^2 * y + x * z)/ r^3 * si + (2 * z^2 * y / r^4 - y / r^2) * (co - 1) - x * z / r^2 * co dRdz[3, 1] = (z^2 * x + z * y) / r^3 * si + (2 * z^2 * x / r^4 - x / r^2) * (co - 1) - z * y / r^2 * co dRdz[3, 2] = (z^2 * y - x * z) / r^3 * si + (2 * z^2 * y / r^4 - y / r^2) * (co - 1) + x * z / r^2 * co dRdz[3, 3] = (z^3 / r^3 - z / r) * si + 2 * (z/r^2- z^3 / r^4) * (1 - co) return dRdz end function derivative_x_diff(w::Vector{Float64},timestep::Float64,eps::Float64) R = Array{Float64,2}(undef,3,3) Re = Array{Float64,2}(undef,3,3) dRdx = Array{Float64,2}(undef,3,3) local x,y,z = w .* (2 * pi * timestep ) local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r) local nx = x/r local ny = y/r local nz = z/r local R = zeros(3,3) R[1,1] = co + nx^2 * (1 - co) R[1,2] = - nz * si + nx * ny * (1 - co) R[1,3] = ny * si + nx * nz * (1 - co) R[2,1] = nz * si + nx * ny * (1 - co) R[2,2] = co + ny^2 * (1 - co) R[2,3] = - nx * si + ny * nz * (1 - co) R[3,1] = -ny * si + nx * nz * (1 - co) R[3,2] = nx * si + ny * nz * (1 - co) R[3,3] = co + nz^2 * (1 - co) x = x + eps local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r) local nx = x/r local ny = y/r local nz = z/r local Re = zeros(3,3) Re[1,1] = co + nx^2 * (1 - co) Re[1,2] = - nz * si + nx * ny * (1 - co) Re[1,3] = ny * si + nx * nz * (1 - co) Re[2,1] = nz * si + nx * ny * (1 - co) Re[2,2] = co + ny^2 * (1 - co) Re[2,3] = - nx * si + ny * nz * (1 - co) Re[3,1] = -ny * si + nx * nz * (1 - co) Re[3,2] = nx * si + ny * nz * (1 - co) Re[3,3] = co + nz^2 * (1 - co) local dRdx = (Re-R)/eps return dRdx end function derivative_y_diff(w::Vector{Float64},timestep::Float64,eps::Float64) R = Array{Float64,2}(undef,3,3) Re = Array{Float64,2}(undef,3,3) dRdy = Array{Float64,2}(undef,3,3) local x,y,z = w .* (2 * pi * timestep ) local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r) local nx = x/r local ny = y/r local nz = z/r local R = zeros(3,3) R[1,1] = co + nx^2 * (1 - co) R[1,2] = - nz * si + nx * ny * (1 - co) R[1,3] = ny * si + nx * nz * (1 - co) R[2,1] = nz * si + nx * ny * (1 - co) R[2,2] = co + ny^2 * (1 - co) R[2,3] = - nx * si + ny * nz * (1 - co) R[3,1] = -ny * si + nx * nz * (1 - co) R[3,2] = nx * si + ny * nz * (1 - co) R[3,3] = co + nz^2 * (1 - co) y = y + eps local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r) local nx = x/r local ny = y/r local nz = z/r local Re = zeros(3,3) Re[1,1] = co + nx^2 * (1 - co) Re[1,2] = - nz * si + nx * ny * (1 - co) Re[1,3] = ny * si + nx * nz * (1 - co) Re[2,1] = nz * si + nx * ny * (1 - co) Re[2,2] = co + ny^2 * (1 - co) Re[2,3] = - nx * si + ny * nz * (1 - co) Re[3,1] = -ny * si + nx * nz * (1 - co) Re[3,2] = nx * si + ny * nz * (1 - co) Re[3,3] = co + nz^2 * (1 - co) local dRdy = (Re-R)/eps return dRdy end function derivative_z_diff(w::Vector{Float64},timestep::Float64,eps::Float64) R = Array{Float64,2}(undef,3,3) Re = Array{Float64,2}(undef,3,3) dRdz = Array{Float64,2}(undef,3,3) local x,y,z = w .* (2 * pi * timestep ) local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r) local nx = x/r local ny = y/r local nz = z/r local R = zeros(3,3) R[1,1] = co + nx^2 * (1 - co) R[1,2] = - nz * si + nx * ny * (1 - co) R[1,3] = ny * si + nx * nz * (1 - co) R[2,1] = nz * si + nx * ny * (1 - co) R[2,2] = co + ny^2 * (1 - co) R[2,3] = - nx * si + ny * nz * (1 - co) R[3,1] = - ny * si + nx * nz * (1 - co) R[3,2] = nx * si + ny * nz * (1 - co) R[3,3] = co + nz^2 * (1 - co) z = z + eps local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r) local nx = x/r local ny = y/r local nz = z/r local Re = zeros(3,3) Re[1,1] = co + nx^2 * (1 - co) Re[1,2] = - nz * si + nx * ny * (1 - co) Re[1,3] = ny * si + nx * nz * (1 - co) Re[2,1] = nz * si + nx * ny * (1 - co) Re[2,2] = co + ny^2 * (1 - co) Re[2,3] = - nx * si + ny * nz * (1 - co) Re[3,1] = -ny * si + nx * nz * (1 - co) Re[3,2] = nx * si + ny * nz * (1 - co) Re[3,3] = co + nz^2 * (1 - co) local dRdz = (Re-R)/eps return dRdz end function printcmat(mat) nrow,ncol = size(mat) for irow = 1:nrow @printf(" ") for icol = 1:ncol @printf("(%f %f*i) ",real(mat[irow,icol]), imag(mat[irow,icol])) end @printf("\n") end end testexpr1 = derivative_x_expr(w,timestep) testdiffr1 = derivative_x_diffr(w,timestep,eps) testxact1 = derivative_x_xact(w,timestep) testdiff1 = derivative_x_diff(w,timestep,eps) testexpr2 = derivative_y_expr(w,timestep) testdiffr2 = derivative_y_diffr(w,timestep,eps) testxact2 = derivative_y_xact(w,timestep) testdiff2 = derivative_y_diff(w,timestep,eps) testexpr3 = derivative_z_expr(w,timestep) testdiffr3 = derivative_z_diffr(w,timestep,eps) testxact3 = derivative_z_xact(w,timestep) testdiff3 = derivative_z_diff(w,timestep,eps) println("derivative_x_diff") printcmat(testdiff1) println("derivative_x_xact") printcmat(testxact1) #println("") # printcmat(testdiffr1[1:3,1:3]) # println("") # printcmat(testexpr1[1:3,4:6]) println("") println("derivative_y_diff") printcmat(testdiff2) println("derivative_y_xact") printcmat(testxact2) println("") println("derivative_z_diff") printcmat(testdiff3) println("derivative_z_xact") printcmat(testxact3) # println("") # printcmat(testdiffr2[1:3,1:3]) # println("") # printcmat(testexpr2[1:3,4:6]) # println("") # printcmat(testdiff3) # println("") # printcmat(testxact3) ntest = 1000 wtest = rand(Float64,ntest,3) println("btime runs for xact solutions x,y,z") @btime begin for itest = 1:ntest testxact1 = derivative_x_xact(wtest[itest,:],timestep) end end @btime begin for itest = 1:ntest testxact2 = derivative_y_xact(wtest[itest,:],timestep) end end @btime begin for itest = 1:ntest testxact2 = derivative_z_xact(wtest[itest,:],timestep) end end println("btime runs for rotation matrix exponentiation x,y,z") @btime begin for itest = 1:ntest testexpm1 = derivative_x_expr(wtest[itest,:],timestep) end end @btime begin for itest = 1:ntest testexpm1 = derivative_y_expr(wtest[itest,:],timestep) end end @btime begin for itest = 1:ntest testexpm1 = derivative_z_expr(wtest[itest,:],timestep) end end println("btime runs for finite difference calculations rx,ry,rz,x,y,z") @btime begin for itest = 1:ntest testxact1 = derivative_x_diffr(wtest[itest,:],timestep,eps) end end @btime begin for itest = 1:ntest testxact1 = derivative_y_diffr(wtest[itest,:],timestep,eps) end end @btime begin for itest = 1:ntest testxact1 = derivative_z_diffr(wtest[itest,:],timestep,eps) end end @btime begin for itest = 1:ntest testxact1 = derivative_x_diff(wtest[itest,:],timestep,eps) end end @btime begin for itest = 1:ntest testxact1 = derivative_y_diff(wtest[itest,:],timestep,eps) end end @btime begin for itest = 1:ntest testxact1 = derivative_z_diff(wtest[itest,:],timestep,eps) end end