#Packages using LinearAlgebra using Plots using FFTW using Printf using BenchmarkTools #%Complex definition i=sqrt(Complex(-1)); #Definition of individual spin operators nspins=1 include("basis.jl") iu,ix,iy,iz,ip,im,ia,ib=basis(nspins) #General Setup timestep = 0.0000001 w = zeros(Float64,3) w = [3000.0, 7500.0, 1000.0] eps = 0.000000001 th = w * timestep ham = 2 * pi * th[1] * ix[:,:,1] + 2 * pi * th[2] * iy[:,:,1] + 2 * pi * th[3] * iz[:,:,1] uham = exp(- i * ham) rho = iy[:,:,1] rho = uham * rho * uham' function derivative_x_expm(w::Vector{Float64},timestep::Float64) local ham = Array{ComplexF64,2}(undef,2,2) local ctrl= Array{ComplexF64,2}(undef,2,2) local res = Array{ComplexF64,2}(undef,4,4) local i = sqrt(ComplexF64(-1)); local ham = 2 * pi * w[1] * ix[:,:,1] + 2 * pi * w[2] * iy[:,:,1] + 2 * pi * w[3] * iz[:,:,1] local ctrl = - 2 * pi * ix[:,:,1] ./(-timestep*2*pi) local mnull = zeros(2,2) res = exp(-i * timestep * [ham ctrl; mnull ham]) return res end function derivative_y_expm(w::Vector{Float64},timestep::Float64) local ham = Array{ComplexF64,2}(undef,2,2) local ctrl= Array{ComplexF64,2}(undef,2,2) local res = Array{ComplexF64,2}(undef,4,4) local i = sqrt(ComplexF64(-1)); local ham = 2 * pi * w[1] * ix[:,:,1] + 2 * pi * w[2] * iy[:,:,1] + 2 * pi * w[3] * iz[:,:,1] local ctrl = - 2 * pi * iy[:,:,1] ./(-timestep*2*pi) local mnull = zeros(2,2) res = exp(-i * timestep * [ham ctrl; mnull ham]) return res end function derivative_z_expm(w::Vector{Float64},timestep::Float64) local ham = Array{ComplexF64,2}(undef,2,2) local ctrl= Array{ComplexF64,2}(undef,2,2) local res = Array{ComplexF64,2}(undef,4,4) local i = sqrt(ComplexF64(-1)); local ham = 2 * pi * w[1] * ix[:,:,1] + 2 * pi * w[2] * iy[:,:,1] + 2 * pi * w[3] * iz[:,:,1] local ctrl = - 2 * pi * iz[:,:,1] ./(-timestep*2*pi) local mnull = zeros(2,2) res = exp(-i * timestep * [ham ctrl; mnull ham]) return res end function derivative_x_diff(w::Vector{Float64},timestep::Float64,eps::Float64) local ham = Array{ComplexF64,2}(undef,2,2) local hame= Array{ComplexF64,2}(undef,2,2) local res = Array{ComplexF64,2}(undef,2,2) local i = sqrt(ComplexF64(-1)); local ham = 2 * pi * w[1] * ix[:,:,1] * timestep + 2 * pi * w[2] * iy[:,:,1] * timestep + 2 * pi * w[3] * iz[:,:,1] * timestep local hame= ((2 * pi * w[1] * timestep)+eps) * ix[:,:,1] + 2 * pi * w[2] * iy[:,:,1] * timestep + 2 * pi * w[3] * iz[:,:,1] * timestep res = (exp(-i*hame) - exp(-i*ham)) ./ eps return res end function derivative_y_diff(w::Vector{Float64},timestep::Float64,eps::Float64) local ham = Array{ComplexF64,2}(undef,2,2) local hame= Array{ComplexF64,2}(undef,2,2) local res = Array{ComplexF64,2}(undef,2,2) local i = sqrt(ComplexF64(-1)); local ham = 2 * pi * w[1] * ix[:,:,1] * timestep + 2 * pi * w[2] * iy[:,:,1] * timestep + 2 * pi * w[3] * iz[:,:,1] * timestep local hame= 2 * pi * w[1] * ix[:,:,1] * timestep + ((2 * pi * w[2] * timestep)+eps) * iy[:,:,1] + 2 * pi * w[3] * iz[:,:,1] * timestep res = (exp(-i*hame) - exp(-i*ham)) ./ eps return res end function derivative_z_diff(w::Vector{Float64},timestep::Float64,eps::Float64) local ham = Array{ComplexF64,2}(undef,2,2) local hame= Array{ComplexF64,2}(undef,2,2) local res = Array{ComplexF64,2}(undef,2,2) local i = sqrt(ComplexF64(-1)); local ham = 2 * pi * w[1] * ix[:,:,1] * timestep + 2 * pi * w[2] * iy[:,:,1] * timestep + 2 * pi * w[3] * iz[:,:,1] * timestep local hame= 2 * pi * w[1] * ix[:,:,1] * timestep + 2 * pi * w[2] * iy[:,:,1] * timestep + ((2 * pi * w[3] * timestep)+eps) * iz[:,:,1] res = (exp(-i*hame) - exp(-i*ham)) ./ eps return res end function derivative_x_xact(w::Vector{Float64},timestep::Float64) dQdx = Vector{Float64}(undef,4) x = Float64 y = Float64 z = Float64 r = Float64 si = Float64 co = Float64 local x,y,z = w[1:3] .* (2 * pi * timestep ) local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r/2) local dQdx = [((r^2 - x^2)*si) / (r^3) + (x^2)*co / (2*r*r), x*y*(co/(2*r*r) - si/(r^3)), x*z*(co/(2*r*r) - si/(r^3)), - x*si / (2*r)] return dQdx end function derivative_y_xact(w::Vector{Float64},timestep::Float64) dQdy = Vector{Float64}(undef,4) x = Float64 y = Float64 z = Float64 r = Float64 si = Float64 co = Float64 local x,y,z = w[1:3] .* (2 * pi * timestep ) local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r/2) local dQdy = [x * y * (co / (2*r^2) - si / r^3), ((r^2 - y^2) / (r^3)) * si + (y^2 / (2*r^2)) * co, y * z * (co / (2*r^2) - si / r^3), -y * si / (2*r)] return dQdy end function derivative_z_xact(w::Vector{Float64},timestep::Float64) dQdz = Vector{Float64}(undef,4) x = Float64 y = Float64 z = Float64 r = Float64 si = Float64 co = Float64 local x,y,z = w[1:3] .* (2 * pi * timestep ) local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r/2) local dQdz = [x * z * (co / (2*r^2) - si / r^3), y * z * (co / (2*r^2) - si / r^3), (r^2 - z^2) / (r^3) * si + z^2 / (2*r^2) * co, - z * si / (2*r)] return dQdz end function derivative_x_Qdiff(w,timestep,eps) local x,y,z = w .* (2 * pi * timestep ) local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r/2) A = x * si /r B = y * si /r C = z * si /r D = co x = x + eps local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r/2) Ae = x * si /r Be = y * si /r Ce = z * si /r De = co dAdx = (Ae-A)/eps dBdx = (Be-B)/eps dCdx = (Ce-C)/eps dDdx = (De-D)/eps return [dAdx,dBdx,dCdx,dDdx] end function derivative_y_Qdiff(w,timestep,eps) local x,y,z = w .* (2 * pi * timestep ) local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r/2) A = x * si /r B = y * si /r C = z * si /r D = co y = y + eps local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r/2) Ae = x * si /r Be = y * si /r Ce = z * si /r De = co dAdy = (Ae-A)/eps dBdy = (Be-B)/eps dCdy = (Ce-C)/eps dDdy = (De-D)/eps return [dAdy,dBdy,dCdy,dDdy] end function derivative_z_Qdiff(w,timestep,eps) local x,y,z = w .* (2 * pi * timestep ) local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r/2) A = x * si /r B = y * si /r C = z * si /r D = co z = z + eps local r = sqrt(x^2 + y^2 + z^2) local si,co = sincos(r/2) Ae = x * si /r Be = y * si /r Ce = z * si /r De = co dAdz = (Ae-A)/eps dBdz = (Be-B)/eps dCdz = (Ce-C)/eps dDdz = (De-D)/eps return [dAdz, dBdz, dCdz, dDdz] end function printcmat(mat) nrow,ncol = size(mat) for irow = 1:nrow @printf(" ") for icol = 1:ncol @printf("(%f %f*i) ",real(mat[irow,icol]), imag(mat[irow,icol])) end @printf("\n") end end testxact1 = derivative_x_xact(w,timestep) testxact2 = derivative_y_xact(w,timestep) testxact3 = derivative_z_xact(w,timestep) testQdiff1 = derivative_x_Qdiff(w,timestep,eps) testQdiff2 = derivative_y_Qdiff(w,timestep,eps) testQdiff3 = derivative_z_Qdiff(w,timestep,eps) println("Analytische Quaternionen dABCDdx:") println(testxact1) println("testdiff (Ableitung aus finiten Differenzen) x:") println(testQdiff1) println("Analytische Quaternionen dABCDDdy:") println(testxact2) println("testdiff (Ableitung aus finiten Differenzen) y:") println(testQdiff2) println("Analytische Quaternionen dABCDdz:") println(testxact3) println("testdiff (Ableitung aus finiten Differenzen) z:") println(testQdiff3) ntest = 1000 wtest = rand(Float64,ntest,3) @btime begin for itest = 1:ntest testxact1 = derivative_x_xact(wtest[itest,:],timestep) end end @btime begin for itest = 1:ntest testxact1 = derivative_y_xact(wtest[itest,:],timestep) end end @btime begin for itest = 1:ntest testxact1 = derivative_z_xact(wtest[itest,:],timestep) end end @btime begin for itest = 1:ntest testexpm1 = derivative_x_expm(wtest[itest,:],timestep) end end @btime begin for itest = 1:ntest testexpm1 = derivative_y_expm(wtest[itest,:],timestep) end end @btime begin for itest = 1:ntest testexpm1 = derivative_z_expm(wtest[itest,:],timestep) end end @btime begin for itest = 1:ntest testexpm1 = derivative_x_Qdiff(wtest[itest,:],timestep,eps) end end @btime begin for itest = 1:ntest testexpm1 = derivative_y_Qdiff(wtest[itest,:],timestep,eps) end end @btime begin for itest = 1:ntest testexpm1 = derivative_z_Qdiff(wtest[itest,:],timestep,eps) end end