Oleochemicals

With their unique structure and their ubiquity, fatty acids represent an attractive feedstock for the application in more sustainable synthesis procedures. In our group, we investigate different possibilities to make use of the inherently present functional groups (i.e. double bonds, hydroxy groups or carboxylic acid derivatives) to produce monomers, often by developing new catalytic procedures, for new polymeric materials. A variety of addition as well as oxidation procedures has been established, opening possibilities for the synthesis of polymeric materials ranging from elastomers to thermosets.

Working on this topic: Francesca Destaso, Luis Santos Correa

Recent publications

Wolfs, J.; Ribca, I.; Meier, M. A. R.; Johansson, M. (2023). Polythionourethane Thermoset Synthesis via Activation of Elemental Sulfur in an Efficient Multicomponent Reaction Approach. ACS Sustainable Chemistry and Engineering, 11 (9), 3952–3962. doi:10.1021/acssuschemeng.3c00143

Santos Correa, L.; Meier, M. A. R. (2023). Ruthenium Catalyzed Oxidative Cleavage of High Oleic Sunflower Oil: Considerations Regarding the Synthesis of a Fully Biobased Triacid. European Journal of Lipid Science and Technology, Art.-Nr.: 2200171. doi:10.1002/ejlt.202200171

Windbiel, J. T.; Meier, M. A. R. (2022). RAFT Polymerization of a Renewable Ricinoleic Acid-Derived Monomer and Subsequent Post-Polymerization Modification via the Biginelli-3-Component Reaction. Macromolecular Chemistry and Physics, 223 (12), Art. Nr.: 2100360. doi:10.1002/macp.202100360

Earlier fundamental contributions

Meier, M. A. R. (2019). Plant-Oil-Based Polyamides and Polyurethanes: Toward Sustainable Nitrogen-Containing Thermoplastic Materials. Macromolecular rapid communications, 40 (1), 1800524. doi:10.1002/marc.201800524

Czapiewski, M. von; Rhein, M.; Meier, M. A. R. (2018). Fatty Acid Derived Renewable Platform Chemicals via Selective Oxidation Processes. ACS sustainable chemistry & engineering, 6 (11), 15170–15179. doi:10.1021/acssuschemeng.8b03644

Winkler, M.; Meier, M. A. R. (2014). Olefin cross-metathesis as a valuable tool for the preparation of renewable polyesters and polyamides from unsaturated fatty acid esters and carbamates. Green Chemistry, 16 (6), 3335–3340. doi:10.1039/C4GC00273C

Sugar-based Feedstock

With carbohydrates being one of the most abundant renewable resources, they can be used for the production of valuable platform materials. As an example, fermentation of different sugar monomers can yield furan derivatives or 2,3-butanediol, among others. These compounds can be functionalized further to be incorporated into more sustainable materials, including polyesters, polyethers and polyurethanes.

Working on this topic: Celeste Libretti, Clara Scheelje

Recent publications

Wegelin, S.; Meier, M. A. R. (2024). Bio-based aromatics for chemicals and materials: Advances in renewable drop-in and functional alternatives. Current Opinion in Green and Sustainable Chemistry, 47, Art.-Nr.: 100931. doi:10.1016/j.cogsc.2024.100931

Kirchberg, A.; Wegelin, S.; Grutke, J.; Meier, M. A. R. (2024). Unexpected performance of iron( iii )chloride in the polymerization of renewable 2,3-butanediol and the depolymerization of poly(ethylene terephthalate). RSC Sustainability. doi:10.1039/D3SU00388D

Rhein, M.; Demharter, A.; Felker, B.; Meier, M. A. R. (2022). A Fully Biobased Aromatic Polyester Polyol for Polyisocyanurate Rigid Foams: Poly(diethylene furanoate). ACS Applied Polymer Materials, 4 (9), 6514–6520. doi:10.1021/acsapm.2c00922

Cellulose

The use of cellulose, a highly abundant renewable feedstock that does not interfere with food or feed, can give rise to more sustainable materials. In our group, research focus has been laid upon the functionalization of cellulose within a switchable solvent system based on dimethyl sulfoxide, a superbase and CO2. Like this, it is possible to introduce different functional groups such as esters, thiocarbamates or amides with reduced environmental impact and the possibility to tune the degree of substitution efficiently, thus also allowing to adjust desired material properties.

Working on this topic: Leon Bartlewski, Timo Sehn

Recent publications

Sehn, T.; Meier, M. A. R. (2023). Structure–Property Relationships of Short Chain (Mixed) Cellulose Esters Synthesized in a DMSO/TMG/CO 2 Switchable Solvent System. Biomacromolecules, 24 (11), 5255–5264. doi:10.1021/acs.biomac.3c00762

Libretti, C.; Meier, M. A. R. (2023). Cellulose Functionalization with Methyl Ferulate in a Switchable Solvent System. Macromolecules, 56 (18), 7532–7542. doi:10.1021/acs.macromol.3c01045

Wolfs, J.; Scheelje, F. C. M.; Matveyeva, O.; Meier, M. A. R. (2023). Determination of the degree of substitution of cellulose esters via ATR‐FTIR spectroscopy. Journal of Polymer Science. doi:10.1002/pol.20230220

Earlier fundamental contributions

Wolfs, J.; Meier, M. A. R. (2021). A more sustainable synthesis approach for cellulose acetate using the DBU/CO2 switchable solvent system. Green chemistry, 23 (12), 4410–4420. doi:10.1039/d1gc01508g

Esen, E.; Hädinger, P.; Meier, M. A. R. (2021). Sustainable Fatty Acid Modification of Cellulose in a CO2-Based Switchable Solvent and Subsequent Thiol-Ene Modification. Biomacromolecules, 22 (2), 586–593. doi:10.1021/acs.biomac.0c01444

Onwukamike, K. N.; Grelier, S.; Grau, E.; Cramail, H.; Meier, M. A. R. (2019). Critical Review on Sustainable Homogeneous Cellulose Modification: Why Renewability Is Not Enough. ACS sustainable chemistry & engineering, 7 (2), 1826–1840. doi:10.1021/acssuschemeng.8b04990

Söyler, Z.; Onwukamike, K. N.; Grelier, S.; Grau, E.; Cramail, H.; Meier, M. A. R. (2018). Sustainable succinylation of cellulose in a CO₂-based switchable solvent and subsequent Passerini 3-CR and Ugi 4-CR modification. Green chemistry, 20 (1), 214–224. doi:10.1039/c7gc02577g

Terpenes

Occurring as byproducts in turpentine and citrus fruit production, terpenes represent interesting compounds for special application materials. The double bonds of limonene and pinene, for instance, can be functionalized to introduce epoxide, carbonate, amine or lactone groups. Due to their rigid structure and their structural variety, we investigate the influence of introducing terpene structures into materials such as polyurethanes, polyamides or polyesters.

Working on this topic: Francesca Destaso, Clara Scheelje, Simon Werling

Recent publications

Löser, P. S.; Lamouroux, A.; Meier, M. A. R.; Llevot, A. (2024). A proof-of-concept study on a fully biobased and degradable polymer network based on vanillin and myrcene. Polymer Chemistry, 15 (22), 2240–2252. doi:10.1039/D4PY00269E

Wenzel, J. O.; Santos Correa, L.; Schmidt, S.; Meier, M. A. R. (2024). Benign synthesis of terpene-based 1,4-p-menthane diamine. Scientific Reports, 14 (1), Art.-Nr.: 8055. doi:10.1038/s41598-024-58615-5

Scheelje, F. C. M.; Meier, M. A. R. (2023). Non-isocyanate polyurethanes synthesized from terpenes using thiourea organocatalysis and thiol-ene-chemistry. Communications Chemistry, 6 (1), Art.-Nr.: 239. doi:10.1038/s42004-023-01041-x

Earlier fundamental contributions

Scheelje, F. C. M.; Destaso, F. C. C.; Cramail, H.; Meier, M. A. R. (2022). Nitrogen‐Containing Polymers Derived from Terpenes: Possibilities and Limitations. Macromolecular Chemistry and Physics, 224 (3), Art.-Nr.: 2200403. doi:10.1002/macp.202200403

Raupp, Y. S.; Löser, P. S.; Behrens, S.; Meier, M. A. R. (2021). Selective Catalytic Epoxide Ring-Opening of Limonene Dioxide with Water. ACS sustainable chemistry & engineering, 9 (23), 7713–7718. doi:10.1021/acssuschemeng.1c01788

Firdaus, M.; Meier, M. A. R. (2013). Renewable polyamides and polyurethanes derived from limonene. Green Chemistry, 15 (2), 370–380. doi:10.1039/c2gc36557j

Lignin

Lignin is an important renewable feedstock in chemical industry as it is one of the most abundant biopolymers. Its use for the generation of bioderived polymers is thus investigated extensively. Consisting of a complex network of methoxylated phenylpropanoid units, lignin is the largest renewable resource for aromatic compounds. Deconstruction and further functionalization of lignin can thus yield small molecules that are currently obtained mainly from fossil resources. Lignin is obtained from waste in pulp and paper industry. Turning this waste into valuable starting materials for the chemical industry can be considered a highly sustainable approach.

Working on this topic: Celeste Libretti

Recent publications

Wegelin, S.; Meier, M. A. R. (2024). Bio-based aromatics for chemicals and materials: Advances in renewable drop-in and functional alternatives. Current Opinion in Green and Sustainable Chemistry, 47, Art.-Nr.: 100931. doi:10.1016/j.cogsc.2024.100931

Libretti, C.; Santos Correa, L.; Meier, M. A. R. (2024). From waste to resource: advancements in sustainable lignin modification. Green Chemistry. doi:10.1039/d4gc00745j

Earlier fundamental contributions

Over, L. C.; Hergert, M.; Meier, M. A. R. (2017). Metathesis Curing of Allylated Lignin and Different Plant Oils for the Preparation of Thermosetting Polymer Films with Tunable Mechanical Properties. Macromolecular chemistry and physics. doi:10.1002/macp.201700177

Over, L. C.; Meier, M. A. R. (2016). Sustainable allylation of organosolv lignin with diallyl carbonate and detailed structural characterization of modified lignin. Green chemistry, 18 (1), 197–207. doi:10.1039/c5gc01882j